Enables flexible construction of safety circuits

Complies with International Standards
Force guided contact mechanism (EN50205 Type A TÜV approved)

Fast Response Time
Response time of 8 ms.
Ensures safety by turning the load off quickly.

High Shock Resistance
High shock resistant suitable for use in machine tools and in environments subjected to vibration and shocks. (200 m/s² minimum)

Clear Visibility
Available with a built-in LED.

Compact and Slim
Compact size enables size reduction of PC board.
4-pole type: 13W × 40D × 24H mm
6-pole type: 13W × 50D × 24H mm

Socket Variation
PC board mount and DIN rail mount sockets are available.
Relays can be replaced easily.

Counter-electromotive force diode model
The diode protects the operating coil circuit from counter electromotive force when the relay is energized.

What is a force guided relay?
Relays used in safety circuits to detect failures such as contact welding and damage to the contact spring.
Contacts of a force guided relay are forced to open and close by a guide connected to the armature.
Due to requirements of standard EN50205, a force guided relay has independent NO and NC contacts. If a NO contact welds, a NC contact will not close even when the relay coil is turned off (de-energized) and must maintain a gap of at least 0.5 mm. Furthermore, if a NC contact welds, a NO contact will not close when the relay is turned on (energized) and must maintain a gap of at least 0.5 mm. (General-purpose relays do not have the above characteristics.)

Applications
Force guided relays are used in safety circuits in combination with interlock switches, light curtains, and emergency stop switches to control outputs.
They can also be used to expand outputs for safety relay modules and safety controllers.

Output expansion for safety relay modules and safety controllers

HR1S Safety Relay Module
Cost effective and easy method to expand mechanical contact outputs.

FS1A Safety Controller
Solid state safety outputs of safety controllers can be converted to mechanical contact outputs.

EDM input: External device monitor input

Solid state safety outputs of safety controllers can be converted to mechanical contact outputs.
RF1V Force-guided Relays
SF1V Relay Sockets

Compact and EN compliant RF1V force guided relays.
- Force guided contact mechanism (EN50205 Type A TÜV approved)
- Contact configuration
 4-pole (2NO-2NC, 3NO-1NC)
 6-pole (4NO-2NC, 5NO-1NC, 3NO-3NC)
- Built-in LED indicator model and counter-electromotive force diode model are available.
- Fast response time (8 ms maximum).
- High shock resistance (200 m/s² minimum)
- Finger-safe DIN rail mount socket and PC board mount socket.

Applicable Standards

<table>
<thead>
<tr>
<th>UL508</th>
<th>UL recognized File No. E55996</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA C22.2 No. 14</td>
<td>CSA File No. 253350</td>
</tr>
<tr>
<td>EN50205</td>
<td>EN61810-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact</th>
<th>Rated Coil Voltage</th>
<th>Without LED Indicator</th>
<th>With LED Indicator</th>
<th>With Counter-electromotive Force Diode With LED Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-pole</td>
<td>12V DC</td>
<td>RF1V-2A2B-D12</td>
<td>RF1V-2A2BL-D12</td>
<td>RF1V-2A2BLD1-D12</td>
</tr>
<tr>
<td></td>
<td>24V DC</td>
<td>RF1V-2A2B-D24</td>
<td>RF1V-2A2BL-D24</td>
<td>RF1V-2A2BLD1-D24</td>
</tr>
<tr>
<td></td>
<td>48V DC</td>
<td>RF1V-2A2B-D48</td>
<td>RF1V-2A2BL-D48</td>
<td>RF1V-2A2BLD1-D48</td>
</tr>
<tr>
<td>3NO-1NC</td>
<td>12V DC</td>
<td>RF1V-3A1B-D12</td>
<td>RF1V-3A1BL-D12</td>
<td>RF1V-3A1BLD1-D12</td>
</tr>
<tr>
<td></td>
<td>24V DC</td>
<td>RF1V-3A1B-D24</td>
<td>RF1V-3A1BL-D24</td>
<td>RF1V-3A1BLD1-D24</td>
</tr>
<tr>
<td></td>
<td>48V DC</td>
<td>RF1V-3A1B-D48</td>
<td>RF1V-3A1BL-D48</td>
<td>RF1V-3A1BLD1-D48</td>
</tr>
<tr>
<td>4NO-2NC</td>
<td>12V DC</td>
<td>RF1V-4A2B-D12</td>
<td>RF1V-4A2BL-D12</td>
<td>RF1V-4A2BLD1-D12</td>
</tr>
<tr>
<td></td>
<td>24V DC</td>
<td>RF1V-4A2B-D24</td>
<td>RF1V-4A2BL-D24</td>
<td>RF1V-4A2BLD1-D24</td>
</tr>
<tr>
<td></td>
<td>48V DC</td>
<td>RF1V-4A2B-D48</td>
<td>RF1V-4A2BL-D48</td>
<td>RF1V-4A2BLD1-D48</td>
</tr>
<tr>
<td>5NO-1NC</td>
<td>12V DC</td>
<td>RF1V-5A1B-D12</td>
<td>RF1V-5A1BL-D12</td>
<td>RF1V-5A1BLD1-D12</td>
</tr>
<tr>
<td></td>
<td>24V DC</td>
<td>RF1V-5A1B-D24</td>
<td>RF1V-5A1BL-D24</td>
<td>RF1V-5A1BLD1-D24</td>
</tr>
<tr>
<td></td>
<td>48V DC</td>
<td>RF1V-5A1B-D48</td>
<td>RF1V-5A1BL-D48</td>
<td>RF1V-5A1BLD1-D48</td>
</tr>
<tr>
<td>3NO-3NC</td>
<td>12V DC</td>
<td>RF1V-3A3B-D12</td>
<td>RF1V-3A3BL-D12</td>
<td>RF1V-3A3BLD1-D12</td>
</tr>
<tr>
<td></td>
<td>24V DC</td>
<td>RF1V-3A3B-D24</td>
<td>RF1V-3A3BL-D24</td>
<td>RF1V-3A3BLD1-D24</td>
</tr>
<tr>
<td></td>
<td>48V DC</td>
<td>RF1V-3A3B-D48</td>
<td>RF1V-3A3BL-D48</td>
<td>RF1V-3A3BLD1-D48</td>
</tr>
</tbody>
</table>

Certification for Sockets

<table>
<thead>
<tr>
<th>UL508</th>
<th>UL recognized File No. E62437</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA C22.2 No. 14</td>
<td>CSA File No. 253350</td>
</tr>
<tr>
<td>EN147000</td>
<td>EN147100</td>
</tr>
</tbody>
</table>

Sockets

<table>
<thead>
<tr>
<th>Types</th>
<th>No. of Poles</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN Rail Mount Sockets</td>
<td>4</td>
<td>SF1V-4-07L</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>SF1V-6-07L</td>
</tr>
<tr>
<td>PC Board Mount Sockets</td>
<td>4</td>
<td>SF1V-4-61</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>SF1V-6-61</td>
</tr>
</tbody>
</table>

Coil Ratings

<table>
<thead>
<tr>
<th>Contact</th>
<th>Rated Coil Voltage</th>
<th>Rated Current (mA) ±10% (at 20°C) (Note 1)</th>
<th>Coil Resistance (Ω) ±10% (at 20°C)</th>
<th>Operating Characteristics (at 20°C)</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-pole</td>
<td>12V DC</td>
<td>30.0</td>
<td>400</td>
<td>Pickup Voltage (initial value)</td>
<td>Approx. 0.36W</td>
</tr>
<tr>
<td></td>
<td>24V DC</td>
<td>15.0</td>
<td>1,600</td>
<td>Dropout Voltage (initial value)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48V DC</td>
<td>7.5</td>
<td>6,400</td>
<td>Maximum Continuous Applied Voltage (Note 2)</td>
<td></td>
</tr>
<tr>
<td>3NO-1NC</td>
<td>12V DC</td>
<td>30.0</td>
<td>400</td>
<td>75% maximum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24V DC</td>
<td>15.0</td>
<td>1,600</td>
<td>10% minimum</td>
<td></td>
</tr>
<tr>
<td>4NO-2NC</td>
<td>12V DC</td>
<td>41.7</td>
<td>288</td>
<td>110%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24V DC</td>
<td>20.8</td>
<td>1,152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5NO-1NC</td>
<td>12V DC</td>
<td>41.7</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24V DC</td>
<td>20.8</td>
<td>1,152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3NO-3NC</td>
<td>12V DC</td>
<td>41.7</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24V DC</td>
<td>20.8</td>
<td>1,152</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: For relays with LED indicator, the rated current increases by approx. 2 mA. Note 2: Maximum continuous applied voltage is the maximum voltage that can be applied to relay coils.
Relay Specifications

<table>
<thead>
<tr>
<th>Number of Poles</th>
<th>4-pole</th>
<th>6-pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Material</td>
<td>AgSnO₂ (Au flashed)</td>
<td></td>
</tr>
<tr>
<td>Rated Load (resistive load)</td>
<td>6A 250V AC, 6A 30V DC</td>
<td></td>
</tr>
<tr>
<td>Allowable Switching Power (resistive load)</td>
<td>1500 VA, 180W DC (30V DC max.), 85W DC (30V to 120V DC max.)</td>
<td></td>
</tr>
<tr>
<td>Allowable Switching Voltage</td>
<td>250V AC, 125V DC</td>
<td></td>
</tr>
<tr>
<td>Allowable Switching Current</td>
<td>6A</td>
<td></td>
</tr>
<tr>
<td>Minimum Applicable Load (Note 2)</td>
<td>5V DC, 1 mA (reference value)</td>
<td></td>
</tr>
<tr>
<td>Power Consumption (approx.)</td>
<td>0.36W</td>
<td>0.50W</td>
</tr>
</tbody>
</table>

Dielectric Strength

<table>
<thead>
<tr>
<th>Between contact and coil</th>
<th>4000V AC, 1 minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between contacts of different poles</td>
<td>2500V AC, 1 minute Between contacts 7-8 and 9-10</td>
</tr>
<tr>
<td>Between contacts of the same pole</td>
<td>1500V AC, 1 minute</td>
</tr>
</tbody>
</table>

Electrical Life

| 250 V AC; 6A resistive load: 100,000 operations minimum (operating frequency 1200 per hour) |
| 30 V DC; 6A resistive load: 100,000 operations minimum (operating frequency 1200 per hour) |
| 250 V AC; 1A resistive load: 500,000 operations minimum (operating frequency 1800 per hour) |
| 30 V DC; 1A resistive load: 500,000 operations minimum (operating frequency 1800 per hour) |
| [AC 15] 240 V AC; 2A inductive load: 100,000 operations minimum (operating frequency 1200 per hour, cos ø = 0.3) |
| [DC 13] 24V DC; 1A inductive load: 100,000 operations minimum (operating frequency 1200 per hour, L/R = 48 ms) |

Operating Temperature (relay, socket)

- **Single mounting**:
 - Operating Temperature: −40°C to +85°C
 - Contact Current: 6A
 - Applicable Crimping Terminal: 0.6 max.

- **Collective mounting**:
 - Operating Temperature: −40°C to +70°C
 - Contact Current: 6A
 - Applicable Crimping Terminal: 0.36 max.

Socket Specifications

- **Model**: SF1V-4-07L, SF1V-6-07L, SF1V-4-61, SF1V-6-61
- **Rated Current**: 6A
- **Rated Voltage**: 250V AC/DC
- **Insulation Resistance**: 1000 MΩ minimum (500V DC meger, between terminals)
- **Applicable Wire**: 0.7 to 1.65 mm² (18 AWG to 14 AWG)
- **Recommended Screw Tightening Torque**: 0.5 to 0.8 N·m
- **Screw Terminal Style**: M3 slotted Phillips self-tapping screw
- **Terminal Strength**: Wire tensile strength: 50N min.
- **Dielectric Strength**: 2500V AC, 1 minute (Between live and dead metal parts, between live parts of different poles)
- **Vibration Resistance**: Damage limits: 10 to 55 Hz, amplitude 0.75 mm
- **Shock Resistance**: 1000 m/s²
- **Operating Temperature (Note)**: −40 to +85°C (no freezing)
- **Operating Humidity**: 5 to 85% RH (no condensation)
- **Storage Temperature**: −40 to +85°C (no freezing)
- **Storage Humidity**: 5 to 85% RH (no condensation)
- **Operating Frequency (rated load)**: 1200 operations per hour
- **Weight (approx.)**: 40g

Operating Extremes (half sine-wave pulse: 11 ms)

- **Between contacts of the same pole**: 1500V AC, 1 minute
- **Between contacts 3-4 and 5-6**: 2500V AC, 1 minute
- **Between contacts 3-4 and 7-8**: 2500V AC, 1 minute
- **Between contacts 5-6 and 9-10**: 2500V AC, 1 minute
- **Between contacts 7-8 and 9-10**: 2500V AC, 1 minute
- **Between contacts 7-8 and 11-12**: 2500V AC, 1 minute
- **Between contacts 7-8 and 9-10**: 2500V AC, 1 minute

Applicable Crimping Terminal

- All dimensions in mm.
- Note: Ring tongue terminals cannot be used.
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Shape</th>
<th>Specifications</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN Rail</td>
<td></td>
<td>Aluminum</td>
<td>BAA1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weight: Approx. 200g</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel</td>
<td>BAP1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weight: Approx. 320g</td>
<td></td>
</tr>
<tr>
<td>End Clip</td>
<td>19</td>
<td>Metal (zinc plated steel)</td>
<td>BNL5</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Weight: Approx. 15g</td>
<td>BNL6</td>
</tr>
</tbody>
</table>

Characteristics

Maximum Switching Capacity

<table>
<thead>
<tr>
<th>Contact Current (A)</th>
<th>Contact Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>DC resistive load</td>
</tr>
<tr>
<td>1</td>
<td>AC resistive load</td>
</tr>
</tbody>
</table>

Electrical Life Curve

<table>
<thead>
<tr>
<th>Life (× 10,000 operations)</th>
<th>Contact Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC resistive load</td>
</tr>
<tr>
<td>10</td>
<td>AC resistive load</td>
</tr>
</tbody>
</table>

Notes on Contact Gaps except Welded Contacts

Example: RF1V-2A2B-D24

- If the NO contact (7-8 or 9-10) welds, the NC contact (3-4 or 5-6) remains open even when the relay coil is de-energized, maintaining a gap of 0.5 mm minimum. The remaining unwelded NO contact (9-10 or 7-8) is either open or closed.
- If the NC contact (3-4 or 5-6) welds, the NO contact (7-8 or 9-10) remains open even when the relay coil is energized, maintaining a gap of 0.5 mm minimum. The remaining unwelded NC contact (5-6 or 3-4) is either open or closed.

Dimensions (All dimensions in mm.)

RF1V Relays

RF1V (4-pole)

RF1V (6-pole)

PC Board Terminal Model

Mounting Hole Layout (Bottom View)

RF1V (4-pole)

RF1V (6-pole)

Internal Connection (Bottom View)

RF1V (4-pole)

Without LED Indicator

With LED Indicator

With Counter-electromotive Force Diode

RF1V (6-pole)

Without LED Indicator

With LED Indicator

With Counter-electromotive Force Diode
RF1V Force Guided Relays/SF1V Relay Sockets

Dimensions (All dimensions in mm.)

SF1V PC Board Mount Sockets

SF1V (4-pole)
![Diagram of SF1V (4-pole) PC Board Mount Socket Dimensions](image)

SF1V (6-pole)
![Diagram of SF1V (6-pole) PC Board Mount Socket Dimensions](image)

SF1V DIN Rail Mount Socket Dimensions

SF1V (4-pole)
![Diagram of SF1V (4-pole) DIN Rail Mount Socket Dimensions](image)

SF1V (6-pole)
![Diagram of SF1V (6-pole) DIN Rail Mount Socket Dimensions](image)

PC Board Mounting Hole Layout / Terminal Arrangement

(Top View)

(Top View)

(Internal Connection)

M3 Terminal Screws

(Internal Connection)

M3 Terminal Screws

(Panel Mounting Hole Layout)

80.0 ±0.2

2–M3.5 or ø4 holes

(Panel Mounting Hole Layout)

80.0 ±0.2

2–M3.5 or ø4 holes
Operating Instructions

1. Driving Circuit for Relays

1. To make sure of correct relay operation, apply rated voltage to the relay coil. Pickup and dropout voltages may differ according to operating temperature and conditions.

2. Input voltage for DC coil:

A complete DC voltage is best for the coil power to make sure of stable operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectifications circuit, relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.

3. Operating the relay in sync with an AC load:

If the relay operates in sync with AC power voltage of the load, the relay life may be reduced. If this is the case, select a relay in consideration of the required reliability for the load. Or, make the relay turn on and off irrespective of the AC power phase or near the point where the AC phase crosses zero voltage.

4. Leakage current while relay is off:

When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit below, leakage current (Io) flows through the relay coil while the relay is off. Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.

Incorrect

Correct

5. Surge suppression for transistor driving circuits when the relay coil is turned off, a high-voltage pulse is generated. Be sure to connect a diode to suppress the counter electromotive force, or use RF1V with counter-electromotive force diode. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the controlling transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

6. The coil terminal of the relay has polarity. Connect terminals according to the internal connection diagram. Incorrect wiring may cause malfunction.

2. Protection for Relay Contacts

1. The contact ratings show maximum values. Make sure that these values are not exceeded even momentarily. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.

2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in an increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using an actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics.

Four typical examples of contact protection circuits are shown in the following table:

3. Do not use a contact protection circuit as shown below:

In general, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor will improve the switching characteristics of a DC inductive load.

3. Usage, transport, and storage conditions

1. Temperature, humidity, atmospheric pressure during usage, transport, and storage:

- Temperature: –40°C to +85°C (no freezing)
- Humidity: 5% to 85%RH (no condensation)
- Atmospheric pressure: 80 to 106 kPa

Operating temperature and humidity range

2. Condensation

Condensation occurs when there is a sudden change in temperature under high temperature and high humidity conditions. The relay insulation may deteriorate due to condensation.

3. Freezing

Condensation or other moisture may freeze on the relay when the temperatures are lower than 0°C. This causes problems such as sticking of movable parts or delay in operation.

4. Low temperature, low humidity environments

Plastic parts may become brittle when used in low temperature and low humidity environments.

4. Panel Mounting

When mounting DIN rail mount sockets on a panel, take the following into consideration:

- Use M3.5 screws, spring washers, and hex nuts.
- For mounting hole layout, see dimensions on page 4.
- Keep the tightening torque within 0.49 to 0.68 N·m.

5. Others

1. General notice

- To maintain the initial characteristics, do not drop or shock the relay.
- The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.
- Use the relay in environments free from condensation, dust, sulfur dioxide (SO₂), and hydrogen sulfide (H₂S).
- The RF1V relay cannot be washed as it is not a sealed type. Also make sure that flux does not leak during normal operation. To maintain the initial characteristics, do not remove the relay cover.
- Use the relay in environments free from condensation, dust, sulfur dioxide (SO₂), and hydrogen sulfide (H₂S).
- The RF1V relay cannot be washed as it is not a sealed type. Also make sure that flux does not leak during normal operation. To maintain the initial characteristics, do not remove the relay cover.

2. Connecting outputs to electronic circuits:

- Relay coil terminal of the relay is connected to a load which responds very quickly, such as an electronic circuit, contact bouncing causes incorrect operation of the load. Take the following measures into consideration:
 - Connect an integration circuit.
 - Suppress the pulse voltage due to bouncing within the noise margin of the load.
 - Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.
 - Use UL and CSA ratings may differ from product rated values determined by IDEC.

- Connect an integration circuit.
- Suppress the pulse voltage due to bouncing within the noise margin of the load.
- Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.
- Use UL and CSA ratings may differ from product rated values determined by IDEC.
6. Notes on PC Board Mounting

- When mounting 2 or more relays on a PC board, keep a minimum spacing of 10 mm in each direction. If used without spacing of 10 mm, rated current and operating temperature differs. Consult IDEC.
- Manual soldering: Solder the terminals at 400°C within 3 sec.
- Auto-soldering: Preliminary heating at 120°C within 120 sec. Solder at 260°C±5°C within 6 sec.

- Because the terminal part is filled with epoxy resin, do not excessively solder or bend the terminal. Otherwise, air tightness will degrade.
- Avoid the soldering iron from touching the relay cover or the epoxy filled terminal part.
- Use a non-corrosive resin flux.

RF2 2-pole Force Guided Relays

Ideal for applications requiring 1NO-1NC contact.
Reduce cost and installation space.
Complies with safety standards

Force guided contact mechanism
(EN50205 Type A TÜV approved)

SJ Series Relay Sockets

PC board and DIN-rail sockets available

Plug-in Terminal Relay
Counter-electromotive Force Diode

Relay sockets can be used on plug-in terminal relays only, and cannot be used on PC board relay.

IDEC CORPORATION

Head Office
6-64, Nishi-Miyahara-2-Chome, Yodogawa-ku, Osaka 532-0004, Japan

www.idec.com/usa

Specifications and other descriptions in this brochure are subject to change without notice.
2017 IDEC Corporation, All Rights Reserved.

©2017 IDEC Corporation. All Rights Reserved. RF1V-DS100-0a 8/17 PDF ONLY